

THE CUAHSI WATER DATA CENTER

Background

Consortium of Universities for the Advancement of Hydrologic Science, Inc.

- Established in 2001
- Over 100 members

Mission

- Provide data services for the academic community
 - Data Management/Archive
 - Data Access
- To define how to achieve this mission, CUAHSI uses a community governance structure that directs staff:
 - Board of Directors
 - Standing Committee on Informatics
 - WDC Users Committee

The "Long Tail" of Science

Heidorn (2008). Shedding Light on the Dark Data in the Long Tail of Science. Library Trends, 57(2).

Benefits for Data Publication

- □ Adherence to Standards (ODM1 → ODM2; WaterML1 → WaterML2)
- Free and Open Source Software, Cloud Storage
- We are funded to deal with issues of long term data persistence

Benefits for Data Access

User-Centered Engineering Around Standards

Initially	One year in
CUAHSI HIS is software	CUAHSI HIS is a service
Most important parts of CUAHSI HIS are its software components .	Most important parts of CUAHSI HIS are its standards and best practices .
Addressing problems requires repairing existing software	Addressing problems requires user- centered (agile) engineering
A software ecosystem based upon enabling individual research achievement	A software ecosystem based upon enabling global water science

- There is enormous utility in de-facto standards; these create the leverage that evolves true global standards.
- Standards are more important to maintain and nurture than software.

Challenges

- □ Existing brittle infrastructure → User-centered reengineering
- □ Quality control of data → Develop ways of expressing and measuring data quality
- □ Semantic mediation → Develop approaches to cross-domain data discovery, including controlled vocabularies
- □ Data curation & metadata compliance →
 □ Develop tools that assist users in specifying metadata
- □ Rapidly evolving data formats and standards → Continuous re-engineering
- □ The cost of persistence → Economical and nearline data storage alternatives
- □ New kinds of time series → New metadata and catalog structures

Thank you! Questions?

